
## A NOVEL INDOLE SYNTHESIS

Howard Alper<sup>\*</sup> and John E. Prickett Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada KIN 6N5

(Received in USA 6 April 1976; received in UK for publication 15 June 1976)

The organometallic chemistry of azirines was unexplored until quite recently. Group VI metal carbonyls  $[M(CO)_6, M = Cr, Mo W]$  are useful reagents for converting 2-aryl azirines to pyrazines and dihydropyrazines in good combined yields.<sup>1</sup> Pyrroles were obtained in modest yields using diiron enneacarbonyl as the reagent.<sup>2</sup> Mechanistic studies indicate that the latter reaction proceeds via carbon-nitrogen bond cleavage of the azirine ring, while the heterocycle undergoes carbon-carbon bond cleavage with  $M(CO)_6$ .<sup>3</sup> This communication describes a third, and very useful, reaction of azirines with metal carbonyls.

Treatment of azirines  $[\underline{1}, R = H, CH_3, OCH_3, Br]$  with dicobalt octacarbonyl  $[Co_2(CO)_8]$ in benzene at room temperature for 24 hr. affords 2-styrylindoles  $(\underline{2})$  in good-excellent yields  $[\underline{2}, R = H, 77\%^4; R = CH_3, 95\%, m.p. 213-214^\circ; R = OCH_3, 90\%, m.p. 233 - 235^\circ; R = Br, 52\%, m.p.$ 242 - 244°].<sup>5</sup> 2-Arylethylene derivatives of indole are useful intermediates in alkaloid



synthesis,  $^{6}$  and therefore this reaction represents a simple, convenient, and novel approach to such heterocycles. In addition, 2-substituted indoles are not as readily accessible as

3-substituted indoles.<sup>7</sup>

The following general procedure was used; a mixture of the azirine and  $\text{Co}_2(\text{CO})_8$  in benzene (30-70 ml.) was stirred, under nitrogen, at room temperature for 24 hr. The solution was filtered, and the filtrate was concentrated to a small volume and then purified by chromatography on Florisil or silica gel.

An investigation of the mechanism of this reaction is in progress.

## ACKNOWLEDGMENT

We are grateful to the National Research Council of Canada for support of this research.

## REFERENCES AND NOTES

- 1. H. Alper and S. Wollowitz, J. Amer. Chem. Soc., 97, 3541 (1975).
- 2. H. Alper and J.E. Prickett, J. Chem. Soc., Chem. Commun., 191 (1976).
- 3. H. Alper and J.E. Prickett, unpublished results.
- 4. J.A. Eenkhoorn, S.O. de Silva, and V. Snieckus, Can. J. Chem., 51, 792 (1973).
- 5. The structures of the products were elucidated on the basis of analytical (C, H, N) as well as infrared, nuclear magnetic resonance, ultraviolet, and mass spectral results. Indole 2, R = H, is a known compound.<sup>4</sup>
- 6. e.g., H.P. Husson, C. Thal, P. Potier, and E. Wenkert, Chem. Commun., 480 (1970).
- 7. R.J. Sundberg, "The Chemistry of Indoles", Academic Press, New York, N.Y., 1970.